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Abstract

We describe a multigrid method for solving the steady Euler equations that is optimal in the sense of requiring OðNÞ
operations till convergence, where N is the number of unknowns. The method relies on an elliptic/hyperbolic decom-

position achieved by local preconditioning. The splitting allows the embedded advection equations to be treated with

streamwise semicoarsening rather than full coarsening, which would not be effective. A simple 2-D numerical com-

putation is presented as proof of concept. A convergence study indicates the split method has complexity OðNÞ over a
wide range of grid spacings and Mach numbers, while the use of full coarsening for all equations makes the complexity

deteriorate to almost OðN 1:5Þ.
� 2003 Elsevier B.V. All rights reserved.
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1. Introduction

We describe a multigrid method for solving the steady Euler equations that is optimal in the sense of

requiring OðNÞ operations till convergence, where N is the number of unknowns. The method relies on an
elliptic/hyperbolic decomposition achieved by local preconditioning. This method means a significant

simplification and computational savings compared to the method of Darmofal and Siu [2], who also used

local preconditioning in order to reach OðNÞ complexity. Their multigrid method required semicoarsening
in all directions, which is computationally expensive, especially for three-dimensional problems. Isotropic

semicoarsening, though robust, was understood by those and the current authors to be ‘‘overkill’’ [16]: for
optimal convergence, semicoarsening need only be applied to the embedded advection equations, and only in the

flow direction. Such ‘‘streamwise’’ semicoarsening requires the splitting of the residual into advective and

acoustic components, which happens to be a special benefit of the van Leer–Lee–Roe [17] local precon-

ditioning. Below we use local preconditioning for removing local stiffness as well as for equation decom-

position, and we compare the rate of convergence to subsonic flow solutions for the new ‘‘elliptic/hyperbolic

multigrid’’ and standard (full-coarsening) multigrid methods.
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2. Toward O(N) complexity

In a long sequence of papers running from 1989 [15] to 1999 [2] van Leer and collaborators, later joined

by Darmofal and collaborators, demonstrated that it is possible to achieve convergence to steady Euler

solutions in OðNÞ operations using an explicit single-grid scheme augmented by multigrid relaxation,
provided:

(1) local preconditioning is used to remove the local stiffness caused by the spread of the characteristic

speeds;
(2) the single-grid scheme is designed to efficiently remove all removable high-frequency errors (some

errors are not removable when the flow is grid-aligned);

(3) a multigrid method more powerful than standard full-coarsening multigrid is used to overcome the

alignment problem.

An overview of this research effort has been given by van Leer and Darmofal [16]; in this paper we shall

only present supplemental information needed to understand the current method. This includes a discus-

sion and comparison of the benefits of isotropic and streamwise semicoarsening, and a discussion of elliptic/

hyperbolic splitting.
In this paper we restrict ourselves to the subsonic 2-D Euler equations and their numerical solution. (The

supersonic Euler equations are simpler in that they are fully hyperbolic and can be handled by one

semicoarsening strategy.) There is a complication when going to 3-D Euler, caused by the inability to

separate the advection equation for streamwise vorticity from the acoustic equations by algebraic pre-

conditioning [12,17]; we will return to this subject in the last section.
3. Baseline Euler solver

Our aim is the efficient computation of steady-state solutions to the Euler equations in two

dimensions:
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where q is the density, u and v are the velocity components in the x- and y-direction, respectively, and p is
the static pressure. The specific total energy and enthalpy are given by
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We discretize this system with a cell-centered finite-volume algorithm on a structured quadrilateral grid.

The cell-residual Res is defined as a numerical approximation of the integral over the cell of the spatial

operator, and can be written as
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Res ¼ �
X4
k¼1

UkDsk; ð5Þ

where Dsk is the length of cell face k and Uk is the outward numerical flux normal to the face. In this work,

we use Roe�s approximate Riemann solver, with a modification required for stability in the presence of
preconditioning, and for preserving solution accuracy at low Mach numbers

Uk ¼
1

2
UðULÞ½ þ UðURÞ� �

1

2
P̂P�1jP̂PÂAjðUR �ULÞ: ð6Þ

Here P̂P is a local preconditioning matrix and ÂA is the flux Jacobian, each evaluated at the cell face using

Roe�s average state. To achieve second-order accuracy, Van Leer�s j�scheme [14] is employed with j ¼ 0
and without limiting. We purposely omit the limiting because this highly nolinear technique is known to
stall convergence [1] and might impede our proof of concept. Without limiting, solutions would not be

monotonic near shocks for this choice of j; to the subsonic test problem used below this does not apply.

The residual defined as above drives the evolution of the cell-average �UU of U according to the pre-

conditioned equation

o�UU

ot
¼ 1

S
Pð�UUÞRes; ð7Þ

where S is the area of the cell.
To reach a steady state we integrate this system in time using amultistage time-stepping optimized for high-

frequency damping, as required for use in multigrid relaxation. The particular scheme employed here is the

four-stage optimized smoothing scheme developed for j ¼ 0 by Lynn and van Leer [4,5]; it has the form

�UUð1Þ ¼ �UUn þ bð1ÞDt
S

PnResn;

�UUð2Þ ¼ �UUn þ bð2ÞDt
S

Pð1ÞResð1Þ;

�UUð3Þ ¼ �UUn þ bð3ÞDt
S

Pð2ÞResð2Þ;

�UUnþ1 ¼ �UUn þ bð4ÞDt
S

Pð3ÞResð3Þ:
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We have

Dt ¼ 2mS
X4
k¼1

jqkjdsk

,
: ð9Þ

Here qk is the flow-velocity component normal to cell face k (the preconditioning makes all characteristic
speeds equal to the flow velocity), the CFL-number m has the value 1:4008, and bð1Þ ¼ 0:1299, bð2Þ ¼ 0:2940,
bð3Þ ¼ 0:5604, bð4Þ ¼ 1:0000.
4. Semicoarsening

Multigrid relaxation on a collection of semicoarsened grids was developed by Mulder [9] for increased

robustness, in particular, when the flow is aligned over appreciable portions of the grid. In that case it is

neither possible nor desirable for a single-grid scheme to damp error modes with high frequencies in the
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stream-normal direction for advected quantities such as entropy. The standard full-coarsening multigrid

process (see Fig. 1) then suffers because streamwise low-frequency errors coupled to those modes get av-

eraged out during full coarsening and are not addressed at all. This slows down overall convergence and

makes OðNÞ complexity elusive. Streamwise semicoarsening will make the multigrid process effective in
removing streamwise low-frequency error modes from the advected quantities. Since it may not be known
in advance if, where, and how the flow aligns with the grid, Mulder reasoned that a robust, general-purpose

strategy would be to use contributions from a matrix of grids semicoarsened in all possible directions (see

Fig. 2). This will catch all high-frequency advective errors, while also being a powerful strategy for re-

moving acoustic error modes. Thus, there is no need to decompose the residual into acoustic (elliptic) and
Fig. 2. Mulder�s isotropic semi-coarsening.
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advective (hyperbolic) components. Furthermore, because of the powerful one-dimensional mode-removal

in the corrections on semi-coarsened grids, the demands on the single-grid scheme regarding smoothing are

significantly reduced: only error modes with high frequencies in all directions need to be damped on each

grid. Multistage marching schemes can be designed to do so very effectively, provided the residuals are first

treated with local preconditioning. This clusters the eigenvalues of the spatial operator and makes it

possible to eliminate the corresponding error modes regardless of the Mach number.

Although powerful, such isotropic semicoarsening is computationally too expensive. Compared to

single-grid relaxation, the isotropic semicoarsening adds a factor 4 to the work in 2D and 8 in 3D which are
significantly larger than the corresponding factors 4=3 and 8=7 for full coarsening. On the other hand, the
proposed multigrid method adds no more than a factor 5=3 to the work in 2D and 58=35 in 3D (ignoring
the effort of finding the flow-aligned cell strings). Coding complexity as compared to isotropic semi-

coarsening is also significantly reduced; in fact, such isotropic semicoarsening seems virtually unfeasible on

unstructured grids, while the streamwise semicoarsening is feasible as demonstrated by Mavriplis [7], who

selects strings of cells in order to apply line solvers. 1
5. Elliptic/hyperbolic splitting approach

For subsonic flows, the steady Euler equations are known to have a mixed behavior: elliptic for the

acoustic components, hyperbolic for the advective components. Conventional multigrid methods based on

full coarsening are known to work pre-eminently for isotropic elliptic problems, being capable of achieving

OðNÞ-type convergence, but not for hyperbolic, advection-dominated, problems. In the latter case a remedy
is to coarsen the grid only in the advection direction, while retaining the original resolution in the cross-

stream direction, i.e., semicoarsening.
Our approach is then to separate the two problem-types at the residual level, and apply the optimal

strategy to each residual component: full coarsening to the elliptic part, streamwise semicoarsening to the

hyperbolic part (see Fig. 3). Note that this greatly simplifies the grid structure and therefore the multigrid

coding compared with the isotropic semicoarsening of Mulder (see Fig. 2).

To decompose the residual, we make use of the van Leer–Lee–Roe (VLR) [17] preconditioning matrix

corrected for the effect of the cell-aspect ratio AR [4]; its generic form for grid-aligned subsonic flow, based on

the symmetrized Euler equations (with state vector differential ðdp=ðqaÞ; du; dv; dsÞT, s denoting entropy), is
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where M is the local Mach number, b ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�M2

p
, and

s ¼ b
b þ AR

: ð11Þ

The VLR symmetric preconditioner achieves the lowest possible condition number for all Mach num-

bers. For 2-D subsonic flow it has the property of decoupling the pair of acoustic equations from the re-
maining hyperbolic equations; it is unique in this respect [8]. There are other preconditioners that achieve

the lowest condition number [3]; among these is a generalization of Turkel�s [13] lower-triangular low-speed
preconditioner. This one does not separate the elliptic from the hyperbolic equations, but it may be used to
1 A streamwise line solver definitely is an alternative to a multistage advection scheme.



Fig. 3. The grid sequences for the new approach: full/semi-coarsening for the elliptic/hyperbolic residual part.
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split the residual into elliptic and hyperbolic contributions. However, there is no practical experience in
such use of the Turkel preconditioner, whereas the VLR preconditioner has been routinely used where

elliptic/hyperbolic splitting is called for [8,11]; see also [10] which describes the derivation of the VLR

preconditioner based on elliptic/hyperbolic decomposition of PDEs. This justifies the choice of the VLR

preconditioner for the current application.

Without going into the details of its derivation, we wish to point out that the matrix contains elements

and terms in elements proportional to s, and other elements and terms in elements that do not contain s.
The terms proportional to s together select the acoustic contributions to the residual, the other terms select
the advective contributions. The value of s is the ratio of the acoustic speed to the flow speed in the pre-
conditioned world. When applying the preconditioner to the Euler equations, setting s equal to b yields the
lowest possible condition number, K ¼ 1=b ¼ 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�M2

p
, down from K ¼ ðM þ 1Þ=minðM ; 1�MÞ before

preconditioning. When applying the preconditioner to an Euler discretization, the value b=ðb þ ARÞ is
better [3], as it takes into account the effect of artificial dissipation.

The elliptic/hyperbolic decomposition therefore is given by

PVLR ¼ PellVLR þ PhypVLR; ð12Þ
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Applying PellVLR and P
hyp
VLR to the residual gives the elliptic and hyperbolic part of the residual within each

cell, respectively, i.e.,

Resell ¼ PellVLRRes; Resell ¼ PhypVLRRes: ð14Þ

Note that in the residual computation nothing changes; in particular, the flux function (6) is still

computed using the full preconditioning matrix PVLR.
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Using the above decomposition we are able to compute acoustic and advective changes to the solution

separately, and on separate grid sequences. Starting on the finest grid, we update with purely acoustic

contributions by using the baseline scheme (8) in which P is replaced by PellVLR, i.e.,

�UUðkþ1Þ ¼ �UUn þ bðkþ1ÞDt
S

P
ellðkÞ
VLRRes

ðkÞ: ð15Þ

We continue doing so on the fully coarsened grid sequence (cf. Fig. 3), according to the chosen multigrid

cycle. Similarly, we update with purely advective contributions by using the baseline scheme (8) in which P

is replaced by P
hyp
VLR, i.e.,

�UUðkþ1Þ ¼ �UUn þ bðkþ1ÞDt
S

P
hypðkÞ
VLR Res

ðkÞ; ð16Þ

and continue doing so on the streamwise coarsened grid sequence (cf. Fig. 3), according to the chosen

multigrid cycle.

For the simple test problem considered in this study we used the simplest possible restriction and
prolongation strategies: restriction by conservation over four/two cells for the elliptic/hyperbolic part, and

prolongation by bilinear/linear interpolation. The acoustic and advective residuals were treated completely

independently throughout the multigrid cycle; only at the finest grid level, where the elliptic and hyperbolic

grids are identical, the total solution corrections for the different components were combined into a solution

update. The convergence results show that this worked; for more complex problems we would expect the

need for tighter coupling between the operators acting on the elliptic and hyperbolic residual components.
6. Numerical results

Our test case is flow over a smooth 5%-high bump in the interval 06 x6 1 described by y ¼ 0:05 sinðpxÞ
(no stagnation points), for which many results are available in the literature [2,6]. The flow is

almost perfectly aligned with the grid and conventional multigrid methods fail to achieve OðNÞ-type
convergence.

The domain is defined by �16 x6 3:5 and 06 y6 2; the boundary at y ¼ 0 is treated as solid and the
other ones as open. At the boundaries, a ghost-cell approach is used: reflection of the normal velocity while
keeping all other state variables the same across the solid wall; prescribing freestream values across open

boundaries. The boundary fluxes are then determined by the same Riemann solver as used in the interior.

The grid is a structured quadrilateral grid with modest compression toward the wall. A sample grid and

solution are shown in Figs. 4 and 5.

A numerical solution is taken to be converged when all L1 norms of the components of the residual, viz.
mass, momentum and energy, are reduced five orders of magnitude from their initial values.

For the multigrid relaxation an F ð1; 1Þ-cycle is chosen with the coarsest grid of 8
 4 cells; note that
the streamwise semicoarsening (essentially in the x-direction) keeps the number of cells in the y-direction
the same for all grids. A work unit is defined as the amount of work required to evaluate the full residual on

the finest grid. The total number of work units presented in the following results includes four initial

relaxations on the finest grid prior to the multigrid cycles.

The convergence histories for various grids (64
 32, 128
 64, 256
 128, 512
 256) are shown in Figs. 6
and 7, comparing the results of full-coarsening F-cycle multigrid with a preconditioned four-stage Jacobi

relaxation and the new elliptic/hyperbolic decomposition method with the same F-cycle and four-stage

Jacobi relaxation for each subproblem. It is evident that the convergence is independent of the grid size in

the new method, whereas the conventional method requires an increasing amount of work to converge as
the grid gets finer.



Fig. 4. A 64
 32 grid.

Fig. 5. Mach contours on the 128
 64 grid; M1 ¼ 0:1.

Fig. 6. Convergence histories for full coarsening (M1 ¼ 0:1). Solid: 64
 32; dash: 128
 64; dash-dot: 256
 128; dot: 512
 256.

H. Nishikawa, B. van Leer / Journal of Computational Physics 190 (2003) 52–63 59



Fig. 7. Convergence histories for the new decomposition approach (M1 ¼ 0:1). Solid: 64
 32; dash: 128
 64; dash-dot: 256
 128;
dot: 512
 256.

60 H. Nishikawa, B. van Leer / Journal of Computational Physics 190 (2003) 52–63
In Figs. 8 and 9 convergence histories for the two methods are plotted for different Mach numbers. For

both methods the plots coincide, showing independence of Mach number. This is a well-known property of

the VLR preconditioner. Without preconditioning, this is not possible, as reported by many researchers [2].
Fig. 8. Convergence histories for full coarsening on 512
 256 grid for different Mach numbers. Solid: M1 ¼ 0:1; dash: M1 ¼ 0:3;
dash-dot: M1 ¼ 0:5.



Fig. 9. Convergence histories for the new approach on 512
 256 grid for different Mach numbers. Solid: M1 ¼ 0:1; dash: M1 ¼ 0:3;
dash-dot: M1 ¼ 0:5.
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Lastly, actual CPU times for the two methods are compared in Fig. 10, measured when the programs are

run on a single Pentium III (500 MHz) processor. The curves were determined by least-squares linear fits in

log–log space. The plots show that the convergence rate is OðNÞ for the new method, while nearly OðN 1:5Þ
for full coarsening. Thus, for sufficiently fine grids the new method outperforms the standard method.
Fig. 10. CPU time versus grid size for M1 ¼ 0:1. Solid: new approach CPU ¼ 1:7
 10�3 
 N 0:971; dash: full coarsening

CPU ¼ 1:53
 10�5 
 N 1:44 where N is the number of cells.
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7. Conclusions and future work

The numerical results presented provide the proof of concept for the current elliptic/hyperbolic multigrid

method. Putting it differently: had the proposed strategy not worked for this problem, we might as well

forget about making it work for more complex problems. The great advantage of the adopted test problem

was that it was a priori known which strings of cells had to be semicoarsened. Thus, the investment in

coding streamwise coarsening was minimal.

Obviously, we are just at the start of the development of a more robust method. The following points
need to be attended in the future:

(1) Development of a tightly coupled restriction-prolongation strategy for the elliptic and hyperbolic

residual components.

(2) Formulation of the method on unstructured grids, where one has to determine ‘‘on the go’’ which

cells are strongly coupled in the flow direction. Here we can learn from previous experience by Mav-

riplis [7], who selects strings of cells in order to apply line solvers.

(3) Overcoming the problem of reduced acoustic-residual smoothing near a sonic line or for large cell-

aspect ratios (these problems do not arise with isotropic semicoarsening).
(4) Blending the method with a semicoarsening strategy for supersonic flow, which by itself still needs

development.

(5) Extending the method to three dimensions. As mentioned above, one of the hyperbolic components

cannot be decoupled from the acoustic residual with conventional preconditioning; decoupling is only

achieved if the preconditioning operator include differentiation entries. For certain discretizations

(multi-D residual-distribution schemes) it may actually be possible to achieve this numerically without

leaving the conservation form of the equations. Meanwhile, it remains to be seen how seriously mul-

tigrid convergence would be effected if the decomposition were not complete.
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